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1. Introduction.

Iet H be an Hermitian matrix, 2 a row vector of unit length,
p = zHz¥* , 02 = z(H- uI)’az* . ‘The enclosure theorem of Krylov and
Bogoliubov [1] (see also Weinstein [2), Kohn [3]), Block and Fuchs
[4], swanson [5] ) asserts that there is an eigenvalue in the interval
[H-0 , nto] .

We now present & probabilistic interpretation which yields a
simple proof of this result as well as other enclosure theorens.

Write H = U"DU, where U is unitary, D = diag( él, e s 8)

then for any unit vector =z ,
u = zHz* = (zU%) D(Uz*) = ), P’QJ ’

with 0 <p g P pd = 1 . Consequently, we may view u as the mean of

- & random varisble X with probability distribution P (X = 6] = p“j‘ )3 =

1, ... , k . Similarly, o2 = z(H- uI)%z* = Z py(0- u)2 1s the variance

of X . According to th‘e‘ Biemy’m"é-(!hebyehev inequality,
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(1) R IX-ulset )14,

Hence, for all t > 1 there is positive mass in the interval [w-ot ,
W+ot] , which implies that there is positive mass in (-0 , H+o] ..
Since the mass is distributed oﬁly on_eigen:va'luea, this means that there
is at least one eigenvalue in (o , u+to) . | .

In general, if a bound is obtained for some set ,d y l.e.,
P(X ¢ ._J] >p, then p'j > p‘ » where the summation is over all
correspording to VOJV € ,J But p, = |uJ z2*}2
Jth

the eigenvalue 6, , so that ) |u 3 2*|? >p.

o

In Section 2 we state & mumber of enclosure theorems, and in

s Where “J is the

row of U, and is, therefore, an eigenvector corresponding to

Section 3 we present the related p'robab:lliaticr inequalities which -

furnish proofs.

2, Enclosure Theorems.

We now state a number of enclosure theorems t'o. 11lustrate the
variety of results which may be obtained in this manner.
In the following we let H be an Hermitian matrix, z a rowv -

vector of unit length, u = gHz , a? = z(H—pI)azf .

2.1 General ngmitia.n Matrix.

There exists at least one eigenvalue in the interval
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This inequality is sharp.

Remgrk. ‘
In this and the following theorems, & slightly stronger version
can be obta:itied by making the interval half-open.

This theorem is given by Kato [6]. The result of Section 1 is & .

special cese with a = 0 .,

2.2 Pés_iti.,vg pe,tinite He',mit'i;n M’a,t;'ix.

Let H be positive definite, and u_, = il . 10 s<u,
s < 1/.u_1 , then the interval [s , (n-8) / (1- su_l)]' contains at
least one eigenvalue.

The perticular interval, [(1-/Wi_-1) /u_,, (1+/ 1)/ u;1]~ ,

has minimim length.

2.3 Bounded Hermitian Matrix.
let H and I-H be positive definite. If -p<r<-0°/(1-u),
then there is at least one eigenvalue in [0 , r+u]U[- a/r +4, 1] .

3, Px'obabfility Inequalities.

We now present the probability inequalities which furnish proofs

for the enclosure theorems of Section 2‘.

3.1 Theorem of Selberg [7]:

If X 4s a random variable with EX= 4, B(x --1.;).“'2 = qa » then
for all real a and positive b, ' '
o+ a°

'b2
i} oa 2

.(11) P{ :lx._u_rg"'<b}_>-1'?——-(_-;—TT)-2-; ir 62<|&'~b-‘
. g + - ‘ e . -

(1) P(Ix-n-al<p)>1- , 12 > al b-a?,
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The proof of this asymmetric version of the Bignaymé-'Chebyshev
inequality in [7] is unnecessarily complicated, and we give the

following proof.

Proof.

Ir £(x) = —(,:oz-a)2 / 2 whenever 02 2 la] © - a2 , f(x) = .

b - [al) x - 6212 / [(v - {a])2 + ¢®)® vhenever o° < |al b - &?,

then f(x) >0 forall x and f(x) >1 forall |x-u-al>b.
The result follows from E £(X) >P( |x -u -al >b ).
1t v°-8a2>06°>lal b-a®, the extremal distribution is

P(Y-p=a+b)=p , P(Y-u=a-bl=xp,, P(Y-p=el=

1-p -p,, vhere pl-(de-ab+g2)~/2b2, pa-(a’2+ab+a.)/2b .

It °<lel b-a2, a>0, the extremal distribution is

P(Y-u=a-bl=dl (b-u)2+o? Jlal-P(Y-p=o®/(b-a) ).

For a<Q, use -Y for Y.
2 2 2

It ¢° >b° - a®, the extremal distribution is P( Y-p'= a+b-c } =

(b+c-a) /[ 2(b+e) J=1-P(Y-p=a-b-c), where

:c:Joé*rﬁa-b- "

To obtain the enclosure theorem, we c;ansider (1) and require
(2 +e®) /2 <1, %o that for all b>Jo2+a2, there is an
eigenvalue in the interval (a+u-v/a +n. » s*u-ﬁJo + e ]

Since the bound (11) is always less tht.n 1, we obtgin the
shortest interval by choosing b = (o® + &%) / la| . But this leads to
the interval [ a +u - (c° + & )/Ial ,<a+u+(a +a )/l’ﬁl }
which is contained in [a-l-u-v/o + 8? ,a+p+40 + a2 ]

" The extremal distribution for (1) is unique and places pos:ltive

probayilityctbothofthepointa a+p-b and‘a.+u+b. If ve
. \ ‘ ‘

P




eliminate this extremal distribution, the probability is setrictly less

o than the bound, so that P( |X - u - a] < /o® + & }' >0, which says
that there is an eigenvalue.in the open interval ( a+y- 4702 + 52 9
a+tu+ 4*62 + 3'2 ) + By using & half-open ‘int,e'm, the extremal

distribution is included.

3.2 _AB ,Inequa,lig w;th le_ggtive Moments.

If X 1is a positive random variable, i.e., P {X<O0) =0,
EX =y , o Wy » then

| Ple<X<t )2l ————=
| (V- 5)

Equality is achieved if and only if the bound is non-negative and X
has the distribution P (X = 8} = (; +bt) fs /(t-8) ,P(X=1t)=
(a+bs) ¥/ (t-8) , P (X=vaE)=1-(atb )/ (&=,
where a = (p- Vst) / (V& - V/5) , b = (u_l'rsz.._l) / (F - ¥B) .

A

Proof.

| If £(x) = (x - 582 / [x (& - ¥8)° 1, then f£(x) >0 for
all x>0, ‘f'(x) >1 for all x f (s, t), and the result follows .
from E £(X) >P( X ¢ (s , t)} . The extremal distribution is then ‘
determined by placing probability where f£(x) 1is zero or one. ’
We note that pu_, >1, by the Schvarz inequality, 8o that

s<p<t,s< l,/u-_l <t , follow from the condition that the bound

be non-~negative. “ "

. . To obtain the corresponding enclosure theorem, note that the bound

is non-negative when t >(u-8)/(1- u_ls‘) R

®
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3.3 Bounded Random Variables.

If X is & bounded random varisble, i.e., PG <X-u<B )=1,
EX = i, B(x - u)° « o2, @<e<t<P, then P(X<s or X >t} >p.

given as follows:

(1) 1 +- » 1f s+t<a+B, o° >as, o° > B,

ap + g 2 2

(11) 1+m, it s+t>a +B, ¢ 2t , o° >+t ,

2

(111) ) I s+ESA+B, Bt <o <Bs, o° > st ,

(1v) 22X 0 4r o T A +B, GBS oT <At , 0 > st ,
(v) ——8—2:— ir 02<-as‘

Z, 2’ '

8
(v) 52—, 1r <t

t"+o0

(vi1) 0, otherwise.

This inequality is sharp.

Proof.

(1) £(y) = (y -a)(y - B) / [(s-a)e - o),
(11) £(y) = <y - )y - B) / 1(B - )t - )] ,
(m)'. £(y) =1-(y-s8)y-t)/ [(B- s)p -~ t)] ,
(1v) 2(y) =21-(y-8)y-t) /[(t-a)s-a)],
(V) £(y) = @y + 0®)2 / (8 + A2,

1

‘(Vit)‘ 2(y) = (ty + o%)2 / (2 + dé)a ,




50,

! then, for each respective case, f(y) 20 forall xe¢ o, ] , and
£(y) >1 forall xe{s,t], sothat Ef(X) >P(X ¢ [s, t]).
Sharpness is exhibited by the following examples. Let Z be a

random variable with the distribution

P[Z-u-a)=(o+ 5)/[(a-a)(a-a)],
» ' P(2-wea,)=(c°+ a8,) / [(a; - ‘5"‘2 - 8))},
P(Z-us= 35] = (0% + 8,8,) /[(ﬂa3 - 52)(a3 -8l .

The hypotheses are satisfied and equality is attained in cases (1) - (iv)
ir ‘(al ) 8y ) a3) is taken to be:; @, t,B) for (1) ’ (s, t, ?)
for (1i) , (B, t ,a) for (111) , (t , s ,a) for (iv) .

Now let P{z-~u=-62/,ai=p, P(Z-up=a)=1-p. With
a=8 and a =t , equality is attained in cases (v) and (vi) ,
respectively. Equality in the case (vii) is attained if P (2 -.u = 8) =
-2 / [ st - 8)] y P(Z-n=t}=0"/[tlt-38)].

It should be noted that 02‘ <<0p since a <X-u<p. “

(This 1nequality, as well as others, has been obte.ined by Melvin Dresher
and Albert Madansky using the theory of mment speces. )

To obtain the corresponding enclosure Tbeorell 2.3, we examine the
constraints vhich guarantee that the bound is mu-r'xeg‘ativé., The i:nté‘r’yals
obtained for cases (1), (11), (v‘[). and (vi) are larger than ﬁho's,e for
cases (111) and (iv) . The latter two combined yield the result that:
there is an eigenvalue of H - uI i},n @, r]-LJ[-tJ2 /r, B8] for

a<r< -ae/a » i.e., there is an eigenvalue of H ia

7
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lo+n, r+p)l - 0/ r,B+u] . The hypotheses @ + i = O,

B+u=1 give the desired result.

b, . An Enclosure Theorem for Pairs of Eiggnvalue .

The following theorem is due to Hajek and Rényi [8].

4,1 Theorem.
It Xl

Elf‘,;-'a.j »y 05%0) S 00 <to , then

s ses xn are independent random variables, ExJ =0 ’

n
g : , Y- .
PIXy + v +x | < to ,m=1,2, sse s B ) 21-%)1-.‘1 :
To obtain the corresponding enclosure theorem, define u 1= xiﬂx

ai‘ = xi(H - uii)ex* si=1,2. Hence there is a pair of eigenvalues,
not necessarily distinct, 1n the region “1 + tl 10 ul + "2 2 2 N
2 -2 '
for all 0<ty0, S 22,1;1 251.
Thus, for example, if ti =1/\, pg =1/(1-2), with.

°§_ / “2.5 M/ (1+X), weobtain the region
-Ul/ﬂ,wl»*"ua#ae/ml— .

5.  BRemarks on Kantorovich's Inéqualitx
We now show how the probabiliatic :lnterpretation yields results

ccncerning inequalities for quadratic forms.

I H dis an Hermitian matrix such thet O <m < gHz® <M when
'z 1s.a vector of unit length, Kantorovich's inequality [9] asserts




St

2Hz* ZH Lo < (m+ M)'e/ (bmM)
The probabilistic interpretation of this is that if X is & random

variable with P (m <X <M} =1 (m >0) , then

(5.1) Bt < (me M)/ (hmv) .

This inequality cannot be improved. However, if EX = p 1s known, then

the inequality from (5.1)

X' < (m+M)?/ (bmMp)
is not sharp, but there is an improvement, namely,
(5.2) Ex'l < '(mf};-u) / (M) .

This inequality is based upon the simple fact that if #(x) > g(x) for
xea, then [ £(x) du > [ g(x) au . . In particular, if g(x) ‘18
a. & ,

convex on the interval (m , M) - and f£(x) 1is the chord through the

points (m , g(m) ) anda (M, g(M) ) , we obtain

. [t

(5.3) E g(x) < ﬁm}‘—:—g@m + M

Equality 1s attained for the distribution P (X =m) = 1 - P (X = M) =
(M=) / 0-m)
Of interest are the special cases g(x) = x1 and glx) = ',xk ’

k>1,




A number of proofs of (5.1) have been given, e.g., see Henrici

[10). We note that a simple proof is based upon (5.2) , since

' 2
e 1 m+M n-
KR o= (‘W)“ "m S

Another form for (5.1) dis the followingr If P (m<X<M) =1,

(m>0) , P{0<Z)=1, Ez=1, then

o2
(5.4) EzxE2xt < AEEL

The proof is eéssentially the same as for (5.1). A direct appli-
cation of thi's inequality is the case where A and B are permutable

Hermitian matrices with 0 <'m1 < zAz* M, 0< m, < zBz* < M2 ’.

2z2% = 1 s Whence

zAaz* 28 2 *

o fmam ¢ )
- mmMM,

(z4Bz%)2 .
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